
Robust Control for Low-Mass Quadrotors under Wind Disturbances

Denis Alpay, Nikolaj Hindsbo, Kaustabh Paul, William Kraus
{dkalpay, nhindsbo, kaustabp, wkraus}@andrew.cmu.edu

1 Abstract

This project addresses the development of robust
control strategies for low-cost quadrotors operat-
ing under wind disturbances, using the Crazyflie
2.0. Three controllers—Proportional-Integral-
Derivative (PID), Linear Quadratic Regulator
(LQR), and Sliding Mode Control (SMC)—were
designed and evaluated through a simulation-to-
hardware pipeline. The Crazyflie’s onboard optical
flow deck enabled control without reliance on exter-
nal motion capture systems, enhancing real-world
applicability.

The three controllers were tested in simulated
and real-world conditions, including trajectory
tracking and wind disturbance scenarios. LQR ex-
hibited exceptional orientation stability under wind,
SMC demonstrated robustness despite chattering,
which happens due to the fast switching between
control manifolds, and the custom PID provided a
reliable baseline and facilitated controller integra-
tion into the existing Crazyflie code.

This work highlights the significance of
simulation-to-hardware pipelines for bridging the
sim-to-real gap and demonstrates the feasibility of
implementing advanced controllers on lightweight
quadrotors. These findings provide valuable in-
sights into controller trade-offs, advancing drone
control for applications such as search-and-rescue
and industrial inspection. The code developed and
experiment videos are available in the accompany-
ing Github Repository.

2 Problem Description and Previous
Work

For airborne robotics projects across all domains,
stability during flight is paramount to mission suc-
cess. Although passive approaches to flight are
possible, fast aerial maneuvers over long distances
require active control and energy expenditure. Op-

erating in atmospheric conditions introduces sig-
nificant challenges, such as wind disturbances and
nonlinear forces generated by propellers. Sudden
environmental wind gusts or downdrafts from pre-
vious maneuvers can destabilize the quad rotors,
leading to potential mission failures.

In this project, three different control strategies
are developed: PID, LQR, and SMC. A simula-
tion environment for the Crazyflie drone was de-
signed to evaluate the controllers’ stability; this
also enabled low-level control of the drone and
wind modeling, which allowed for a more complete
testing environment for the controllers. Afterwards,
these algorithms were further developed and tuned
on the hardware, crossing significant hurdles with
sim-to-real implementation. With the addition of a
controlled fan to simulate scaled-down wind distur-
bances, the Crazyflie platform provided a low-cost
but highly effective testbed for evaluating control
robustness.

Research Gap: Existing work has primarily fo-
cused on PID and model-based controllers, since
these are easier to implement and their dynamics
are more common among subject matter experts [2].
Model-based controllers such as LQR and model
predictive control use system models to achieve
more accurate performance compared to PID alone,
which is heavily influenced by errors in state mea-
surements [5]. However, sensitivity to parameter
tuning in model-based controllers and not modeling
disturbances make model-based controllers insuffi-
cient in implementation alone for such conditions.
Similarly, while SMC has demonstrated robustness
in rejecting disturbances such as wind [4], its prac-
tical implementation on low-cost hardware remains
underexplored. This gap motivates our comparative
study of PID, LQR, and SMC controllers.

Our contributions are as follows: (1) Develop-
ment of a simulation-to-hardware pipeline for con-
troller design, testing, and implementation, (2)

https://github.com/willkraus9/GustGurus-Drone-Project

integration of robust control strategies into the
Crazyflie firmware, enabling dynamic selection of
PID, LQR, and SMC controllers, and (3) perfor-
mance evaluation of each controller under simu-
lated and real-world wind conditions.

Expected Outcomes: Using this simulation and
hardware pipeline, the results of the paper will eval-
uate the performance of three different controllers.
Each controller’s ability to reject wind disturbances
as a measure of its corresponding states will be mea-
sured on a number of different experiments, with
maintaining stable flight as the quadrotor moves
under wind disturbances a main factor behind the
evaluation.

Figure 1: Overview of the controller development
pipeline used in this project. The process begins with
mathematical derivations, incorporating both model-
based and model-free methods. High-level program-
ming tools such as MATLAB, Simulink, and Python
were used for initial controller design and tuning. Con-
troller prototypes were then tested in a ROS2 and
Gazebo 3D simulation environment written in C++ to
validate their performance under wind conditions. Fi-
nally, the controllers were implemented in hardware
using the Crazyflie platform, leveraging the low-weight
firmware for real-world validation. This pipeline en-
sures a systematic transition from theory to application,
optimizing controller performance across all stages.

3 Model-Based and Model-Free Methods

3.1 System Modeling
The quadrotor was modeled as a cascaded system
with decoupled dynamics, separating position con-
trol (outer loop) from attitude control (inner loop).
The outer loop governs the x, y, and z positions,
providing reference angles (roll, pitch, and yaw)
to the inner loop, which stabilizes the quadrotor’s
orientation.

This cascaded approach simplifies the design by
breaking complex dynamics into manageable sub-
systems. It also offers flexibility, allowing control
blocks to be replaced or tuned independently. Addi-
tionally, it is computationally efficient, as it avoids
solving coupled dynamics in real-time. The decou-
pling aligns naturally with the physical properties

of the quadrotor, allowing precise control over the
system.

The modeling approach for the Crazyflie quadro-
tor encompassed both nonlinear and linearized dy-
namics. Nonlinear models, based on rigid body
assumptions, captured the full dynamics necessary
for simulation accuracy. However, due to com-
putational constraints and control complexity, lin-
earized models were employed for controller de-
sign, focusing on hover and small-angle approxi-
mations for ideal level flight conditions. Appendix
A shows the derivation of linearized dynamics in
further detail.

3.2 PID
The first controller implemented was a PID con-
troller, composed of six individual PID blocks to
regulate the height, roll, pitch, and yaw compo-
nents of the Crazyflie drone. The implementation
of this controller served three primary purposes.
First, since the controller is relatively easy to de-
rive, testing could begin immediately to determine
how exactly the controller needs to be structured for
hardware implementation. The quick development
time also allowed for the observation of the sim-to-
real gap for the platform, which offered insight into
how successful the other controllers will transition
to hardware. Since the PID controller is imple-
mented and tuned from scratch, rough estimates
for control outputs and gains could be obtained and
the scale in which the controller output was calcu-
lated were used for debugging the LQR and SMC
algorithms.

The PID controller was implemented as a cas-
caded structure, shown in Figure 2. The first section
of the controller contains two sub-controller algo-
rithms, referred to as Outer Loop Control and Inner
Lop Control, that take the error in X and Y position
in body coordinates and output a target roll and
target pitch. The Inner Loop Controller contains
4 additional PID controllers that use height, roll,
pitch and yaw errors and output thrust and torque
in X, Y and Z directions.

• Outer Loop: Position control in x and y axes,
generating desired roll and pitch angles.

• Inner Loop: Attitude control to compute
torques τx, τy, and maintain yaw at 0◦.

This cascaded control approach ensured stable
hover and positional accuracy. Tuning was per-
formed using the Crazyflie GUI client interface,

2

which allowed for real-time adjustments without
reflashing the firmware of the drone. Challenges
for the iterative tuning process included balanc-
ing responsiveness and stability, particularly under
wind disturbances.

3.3 LQR
The LQR is a control strategy that minimizes a cost
function to achieve specific performance objectives.
Unlike the PID and SMC algorithms, which use
a cascaded control structure, the LQR controller
is designed using the full state-space model. This
approach allows the controller to simultaneously
account for all system states. Derivations for the
LQR controller vary widely, but most approaches
for full-state feedback on a quadrotor either having
control output modeled as velocities to each drone
motor or torques and thrusts on the body [7] [6]
[3].

The LQR controller minimizes the following
cost function to balance state deviation and control
effort:

J =
∞∑
0

(x⊤Qx+ u⊤Ru)dt (1)

where x represents the state vector, u is the control
input vector.

To apply the LQR to the Crazyflie, the nonlinear
dynamics of the drone were first linearized around
the hover state. The resulting state-space model
took the form:

ẋ = Ax+Bu

where A and B are the system dynamics matrices
derived from the linearization process, shown in
Appendix A.

The state vector x was defined as:

x =

[
xpos ypos zpos ϕ θ ψ ẋ ẏ ż ϕ̇

θ̇ ψ̇

]⊤
comprising position, orientation (roll ϕ, pitch θ,

and yaw ψ), along with their respective velocities.
The control input vector u was defined as:

u =
[
T τx τy τz

]⊤
representing the torques around the x, y, and z axes
as well as the total thrust for the quadrotor.

After linearization, the continuous system was
converted to discrete for a control frequency of

500 Hz with a Zero-order Hold method. Initial
weighting matrices Q and R were selected using
Bryson’s rule:

Q = diag
(

1

x2max

1

y2max

, . . .

)

R = diag
(

1

u2max

, . . .

)
where xmax and umax represent the maximum al-
lowable deviations in states and control inputs. Af-
ter this calculation, these values were tuned itera-
tively to achieve the desired system performance.

The infinite-horizon solution to the LQR prob-
lem was computed by solving the discrete-time
algebraic Riccati equation:

Pt−1 = Q+A⊤PtA−A⊤PtB
(
B⊤PtB +R

)−1

B⊤PtA

The optimal feedback gain matrix K can then
be obtained using the previous calculation as well
as the discretized state-space matrices:

K =
(
B⊤PB +R

)−1
B⊤PA

This computation was performed offline to reduce
the computational burden on the Crazyflie, allow-
ing the drone to execute control commands effi-
ciently during flight.

3.4 Sliding Mode Control
Sliding Mode Control is a robust control technique
widely used for nonlinear systems with uncertain-
ties and external disturbances. The core idea of
SMC is to drive the system states onto a predefined
surface in the state space, known as the sliding
manifold, and maintain the states on this manifold
thereafter. The dynamics on the manifold are de-
signed to ensure desired system behavior, leverag-
ing the fact that the system becomes insensitive to
certain disturbances and model uncertainties when
it reaches the sliding phase. A derivation of SMC
was performed by the team and is shown in Ap-
pendix B. Our sliding manifold can be written as:

s(xi) = ẋi + αxi

with xi being an individual state and α > 0 a tuning
parameter that governs the convergence rate to the
sliding manifold.

The nonlinear SMC law used in testing and sim-
ulation can be summarized by the following:

ui = −1

b
(f(xi, ẋi) + αẋi)−k1si+k2ẋi2 sign(si)

3

Figure 2: Controller Block Diagram for PID and SMC controllers. Reference state values are fed into the Outer and
Inner Loop control blocks with additional transformations using a World to Body conversion for state error. Then,
the values for computed X, Y, and Z torques on the drone body as well as the total thrust of the drone are fed into
the dynamics of the system.

where:

• −1
b (f(xi, ẋi) + αẋi): Control term compen-

sating for the nominal system and manifold
dynamics.

• −k1si: Proportional term that ensures smooth
convergence to the manifold.

• −k2ẋi2 sign(si): Nonlinear switching term
providing robustness and finite-time conver-
gence.

The combined control law balances robustness and
chattering reduction. The proportional term k1s
ensures smooth control near the sliding manifold,
reducing chattering by avoiding discontinuous con-
trol inputs. However, relying solely on this term
compromises robustness, especially under large
disturbances.

The switching term −k2x2i sign(s) introduces
finite-time convergence and enhances robustness
by providing strong corrective action when devia-
tions from the manifold are significant. The state-
dependent scaling x2i ensures that the switching
term is more active during high velocities and less
dominant near the manifold, minimizing unneces-
sary oscillations. By combining these terms, the
control law provides a trade-off between robust-
ness and chattering, ensuring reliable and smooth
performance under varying conditions. We used
SMC on the states z, roll ϕ and pitch ϕ.

Conclusion for Section All controllers were
successfully derived, with particular attention on

the cascaded structure for the SMC and PID con-
trol structures. Deriving appropriate values for the
SMC was a time-consuming process, but overall
effort was worthwhile to offer a more direct com-
parison with another model-free controller.

4 Simulation Implementation

Gazebo was chosen as the primary simulation en-
vironment for this project due to its robust physics
engine, its capability to simulate wind effects, and
its native support for ROS2. Alternative simulation
tools were evaluated but were found inadequate due
to their inability to simulate environmental distur-
bances, limited open-source support, or excessive
complexity in setup and usage.

One key advantage of Gazebo was its flexibil-
ity in configuring physics parameters. For exam-
ple, the simulation time step was set to 500 Hz to
match the frequency of the hardware control loop,
ensuring consistency between the simulated and
real-world dynamics.

4.1 Drone Model

The Crazyflie drone was modeled in Gazebo us-
ing a Simulation Description Format (SDF) file
obtained from Bitcraze’s official simulation repos-
itory on GitHub [1]. The SDF file was modified
to remove the default controller and provide direct
speed control for each propeller. This modification
allowed for the implementation of custom low-level
controllers.

4

4.2 Control Integration

The controllers were first developed and tested in
MATLAB/Simulink. This workflow is also shown
in Figure 1. Once a controller was developed and
validated in Matlab, it was translated into C++ for
integration with Gazebo. To evaluate robustness,
wind disturbances were introduced into the Gazebo
environment. A uniform wind force of 1 m/s was
applied to test the controllers’ ability to maintain
stability under external disturbances.

4.3 PID

The PID controller that was introduced in Section
3.1 was first implemented and tuned in simulation
until it was able to hover and track a trajectory in
X, Y, and Z directions. The tuning method was as
follows.

1. Start by calculating a baseline for the height
controller. This baseline allows the drone to
give just enough thrust to hover when the error
is 0.

2. Tune the height, roll and pitch controllers until
the drone is able to hover.

3. Tune the yaw controller.

4. Add X and Y controller. The X and Y did not
require much tuning, but mostly required us to
find what the maximum roll and pitch targets
the drone could handle.

After this, the parameter shown in Table 1 were
found.

4.4 LQR

Implementation of the simulated LQR controller
did not require a change in how the state space of
the system was described. A stable controller with
initial guesses for the infinite-horizon LQR gain
matrix K was created, and the controller was fully
simulated with and without wind effects. The K
matrix for the simulated implementation can be
found in Appendix A. This simulation was benefi-
cial not only for reducing damage to the hardware
system, but controller tuning could also be done in
simulation to observe relationships between tuning
different values and controller performance in wind
conditions of approximately 1 meter per second.

4.5 Sliding Mode Control

Sliding Mode Control (SMC) on the quadrotor
was extensively tested in simulation using various
control laws and parameter configurations. This
simulation-based approach allowed us to better un-
derstand the behavior of each tuning parameter and
its impact on the system’s performance. Through
this process, we were able to design a stable SMC
controller for the z-axis, roll, and pitch dynamics,
which performed exceptionally well against wind
disturbances and controlled the z-axis with high ac-
curacy. Meanwhile, x, y, and yaw were controlled
using PID, with x and y achieving stable control
but exhibiting slower convergence compared to the
SMC-controlled axes.

The inclusion of wind modeling in the simula-
tion proved particularly useful, as it enabled us
to tune parameters for different control laws and
assess their robustness to external disturbances.
These parameters provided a strong baseline for
real-world implementation, requiring only minor
retuning on the actual hardware. Overall, the sim-
ulation not only facilitated stable SMC design but
also streamlined the tuning process, allowing us to
achieve reliable and robust quadrotor performance
in real-life scenarios.

Simulation:

• For each controller, define whether any dy-
namics were changed.

• Describe simulation environments

• Present results from simulations, emphasizing
stability and key performance metrics.

Conclusion for Section The controller imple-
mentation in Gazebo offered a way to test the de-
rived controllers based on previous analysis. Qual-
itatively, the controllers performed similarly in
terms of robustness for wind. However, the ideal
conditions of the simulated environment offered a
proof-of-concept to determine if the control logic
and rough values for tuning instead of a direct
implementation; many factors contribute to this
sim-to-real gap, including the lack of variation in
the wind disturbance, different scaling factors for
tuning, hardware motor limitations, and the lack
of properly modeled aerodynamic effects such as
backwashing and turbulence.

5

Table 1: Tuned PID Gains for Hovering and Trajectory Tracking in Simulation. This table presents the final PID
gains optimized in the Gazebo simulation environment for stable hovering and accurate trajectory tracking in x,
y, z, roll, pitch, and yaw. These parameters served as the initial baseline for hardware implementation, ensuring
smooth transitions between simulation and real-world deployment.

Controller Kp Ki Kd Integral Max Output Max
Position X 0.2 0.0 0.01 0.0 0.2
Position Y 0.2 0.0 0.01 0.0 0.2
Height Z 0.8 0.0 0.3 0.0 0.55
Roll (ϕ) 8.0e-4 0.0 1.0e-4 0.0 1.0e-3
Pitch (θ) 8.0e-4 0.0 1.0e-4 0.0 1.0e-3
Yaw (ψ) 4e-4 0.0 2e-4 0.0 1.0e-3

5 Hardware Implementation

5.1 System Overview

The Crazyflie quadrotor served as the primary hard-
ware platform for our project, chosen for its modu-
lar firmware and robust capabilities to implement
and test custom controllers. This platform provided
us with an ideal foundation for developing and eval-
uating the PID, SMC, and LQR controllers. The
controllers were implemented as extensions to the
existing firmware, leveraging Crazyflie’s ”Force
and Torque” control mode. This allowed for direct
control of thrust and torques (τx, τy, τz), enabling
precise control over the drone’s attitude and posi-
tion.

The existing development of Crazyflie con-
trollers matched how the controllers were written
in the Gazebo simulation. The motivation for this
approach was to minimize changes for each suc-
cessive controller in the Sim-2-Real pipeline: mini-
mizing logic errors, accelerating implementation,
and integrating a controller that was working in
simulation as the original guess. The integration
process focused heavily on adapting controllers
from a simulation environment to the Crazyflie
previously derived software implementation. This
involved significant adjustments to general classes,
ensuring each controller compiled correctly within
the firmware’s make directory. Furthermore, the
logic of the C++ controllers developed for simula-
tion was converted into C for compatibility with
the Crazyflie firmware. Additional modifications
were made to align the simulation’s position con-
trol logic with the real-world data inputs, such as
those provided by the optical flow deck.

5.2 Controller Integration

We incorporated our custom controllers into the
Crazyflie firmware by modifying the control stack

to include a selectable controller framework. Each
controller was registered as an additional option in
the ”stabilizer.controller” parameter group. Specif-
ically, the controllers were assigned unique identi-
fiers within the parameter interface:
PID: 6, LQR: 7, SMC: 8. This enabled dynamic
selection of the desired controller through the
Crazyflie client without requiring firmware reflash-
ing.

The implementation followed a cascaded control
structure, similar to the Mellinger controller, but
tailored to support our custom control laws. At
the highest level, a commander module supplied
position and velocity setpoints, which were sub-
sequently converted into attitude rate commands
by the custom controllers. These commands were
finally translated into motor PWM signals through
the attitude rate controller.

A visual representation of our control flow, high-
lighting the integration of the custom controllers,
is shown in Figure 3. Controllers were added in
the src − − > modules − − > src − − >
controllers section of the crazyflie-firmware code
stack.

5.3 Controller Tuning and Optimization

Tuning parameters for the PID and SMC controllers
were simplified through the Crazyflie client’s pa-
rameter interface. This allowed real-time adjust-
ments to the controllers directly within the client
interface (Figure 4). This approach significantly
reduced iteration times, as no firmware flashing
was required after parameter updates.

6

Figure 3: Illustration of the control architecture used in
the Crazyflie firmware. The flowchart demonstrates how
position and velocity setpoints are processed through
the commander module and subsequently fed into the
custom controllers (PID, LQR, and SMC). These con-
trollers generate attitude rate commands of thrust and
torques, which are translated into motor PWM signals
through the next step which is power distribution. The
diagram highlights the modularity and flexibility of the
system for integrating additional controllers.

Figure 4: The Crazyflie cfclient parameter tab was uti-
lized during the development of our custom controllers,
providing a platform for tuning parameters in real-time.
This image highlights the variables available for adjust-
ing PID parameters, with similar tunable parameters
implemented for the SMC controller. This feature al-
lowed for seamless parameter adjustments even during
liftoff, essential for hardware deployment.

In contrast, the LQR controller required offline
computation of the optimal feedback gain matrix
(K) by solving the Riccati equation in Python. This
matrix was then hard coded into the firmware, ne-
cessitating a firmware flash for each update. While
less flexible, this approach ensured computational
efficiency during real-time operation.

Controller performance was primarily evaluated
through iterative testing. For the initial guess of the
values, the controllers that were stable in hovering
and takeoff in simulation were used. From there,
observational tuning involved modifying controller
gains based on the drone’s ability to stabilize in real
life. For example, roll-based terms were adjusted
when the drone exhibited instability in maintaining

level flight, while altitude gains were refined to
minimize overshoot and achieve consistent height
control.

5.4 Hardware Final Controllers Summary
The final controller tuning parameters are shown
on Table 2. In hardware deployment controller out-
put had separate minimum and maximum values
whereas in simulation minimum was just negative
of maximum. The reason for that change is that
we implemented a positive minimum for the Z con-
troller in order to have a controller descent when
the drone is too high.

LQR Controller
The gain matrix (K) for the final LQR controller
is:

K = 10−3×

0 0 70 0 0 0 0 0 406.9 0
0 0
0 0 0 5.62 0 0 0 0 0 0.95
0 0

0.86 0 0 0 5.65 0 1.32 0 0 0
0.95 0
0 −0.86 0 0 0 8.98 0 −1.32 0 0
0 1.09

Table 3: Final controller parameters for SMC imple-
mented on hardware. This table summarizes the cas-
caded control structure used in the final hardware im-
plementation, where SMC was applied to the z (height),
roll, and pitch dynamics to leverage its robustness
against disturbances, while PID controllers were re-
tained for x, y, and yaw control to ensure simplicity
and stability in these axes. The parameters reflect the
final tuning achieved through iterative testing under real-
world conditions, balancing robustness, precision, and
minimizing the effects of chattering.

Controller Type Parameters and Range
X-Controller PID kp = 1.0, ki = 0.0, kd = 0.0,

Range: [−0.2, 0.2]

Y-Controller PID kp = 1.0, ki = 0.0, kd = 0.0,
Range: [−0.2, 0.2]

Z-Controller SMC αz = 25.0, gain = 1.0,m =
0.031, A = 0.35

Yaw-Controller PID kp = 0.001, ki = 0.0, kd =
3× 10−5, Range: [−1.0, 1.0]

Roll-Controller SMC k1 = 0.003, k2 = 1e −
5, gain = 0.13, αroll = 0.8

Pitch-Controller SMC k1 = 0.003, k2 = 1e −
5, gain = 0.19, αpitch = 0.8

Conclusion for Section The implementation of
the hardware was greatly aided by the availabil-

7

Table 2: Final Tuned PID Gains and Output Ranges for Hardware Deployment, Optimized for Hover Stability and
Trajectory Tracking in Real-World Conditions. The gains (Kp, Ki, Kd) and output ranges were iteratively tuned to
ensure a balance between responsiveness, stability, and robustness, particularly under wind disturbances.

Controller Kp Ki Kd Range
X-Controller 0.3 0.0 0.0 [−0.3, 0.3]
Y-Controller 0.3 0.0 0.0 [−0.3, 0.3]
Z-Controller 0.1 0.0 0.05 [0.25, 0.4]

Yaw-Controller 0.001 0.0 3× 10−5 [−1.0, 1.0]
Roll-Controller 0.003 0.001 0.0008 [−1.0, 1.0]
Pitch-Controller 0.003 0.001 0.0008 [−1.0, 1.0]

ity of a custom control stack modified from exist-
ing implementations. Preliminary tuning values
from the initial Gazebo simulation were helpful
for the PID controller especially, but LQR tuning
was more effective via hand-tuning on hardware.
All controllers were successfully integrated, with
subsequent controller development and tuning time
reduced with each subsequent implementation.

6 Testing Environment

6.1 Experimental Setup

Testing was conducted in a controlled indoor en-
vironment (the Carnegie Mellon Drone Cage) to
evaluate the performance of the custom controllers
under two primary scenarios:

1. Square Wave Trajectory Tracking: The
drone was commanded to follow a predefined
trajectory consisting of diagonal, lateral, and
vertical movements of 0.1 - 0.25 meters.

2. Hover Stability in Wind Conditions: A fan was
used to simulate wind disturbances at a fixed dis-
tance from the drone’s take-off (the take-off point
was the same for all controllers) and measured
during the trial to ensure it consistently remained
around 1 meter per second.

6.2 Evaluation Metrics

Performance was evaluated using the following
metrics:

• Position Error: The Euclidean distance be-
tween the desired and actual positions along
the x, y, and z axes, providing a measure of
positional accuracy.

• Attitude Error: The combined angular de-
viations in roll, pitch, and yaw. This metric
was primarily used to assess system stability
during hover tests under wind disturbances.

Normalized error, used for both position and
attitude metrics, was computed as follows:

Normalized Error =

√∑n
i=1(error2i)√∑n

i=1(target2i) + 10−6

(2)
The small constant 10−6 ensures numerical sta-

bility in cases where all targeti = 0, such as when
tracking orientation errors (roll, pitch, yaw = 0).

6.3 Subjective Observations

During tuning, the following observations were
noted:

PID Controller: Initial tuning of the PID con-
troller presented challenges, but once a stable con-
figuration was achieved, fine-tuning became more
intuitive. The PID controller exhibited excellent
performance for position tracking and hovering
accuracy. However, it was the least robust under
wind disturbances, often exhibiting instability dur-
ing gusts.

LQR Controller: The LQR controller was the
most challenging to tune, as stability was highly
sensitive to the gain matrix (K). For a long time,
the drone failed to stabilize or take off, even with a
gain matrix that was working for simulation. Lever-
aging insights from prior work provided by Dr.
Bedillion, we used a reference K matrix to approx-
imate optimal magnitudes for tuning the Q and
R matrices. After iterative adjustments, including
visual inspection and manual refinement of thrust
terms, the LQR controller achieved exceptional sta-
bility in wind conditions, maintaining flight even
under strong disturbances; although, this controller
was not able to properly regulate the position of
the drone and often drifted away from the target X
and Y states. Despite its robustness, the controller
showed susceptibility to drift during position track-
ing, prioritizing roll and pitch stability over precise

8

positional control. The tuning process for the LQR
controller was more time-intensive compared to the
other controllers, as each adjustment to the K ma-
trix required reflashing the firmware and re-solving
the Riccati equation. Consequently, tuning often in-
volved larger incremental changes, which favored
improving orientation stability—critical for wind
testing—at the expense of precise position con-
trol. Despite these challenges, the LQR controller
demonstrated robust performance under windy con-
ditions, highlighting its potential for tasks where
maintaining orientation is paramount.

SMC Controller: From the outset, the SMC
controller demonstrated promising stability during
initial liftoff tests, guided by simulation-based pa-
rameters. However, achieving a balance between
positional accuracy and robustness proved challeng-
ing. The SMC controller excelled in handling ex-
treme disturbances, with rapid counter-movements
effectively maintaining flight. Nevertheless, its
tendency to prioritize stability over precise posi-
tion control resulted in suboptimal hovering per-
formance. Fine-tuning involved iterative trade-offs
among chatter reduction, position control, and dis-
turbance rejection, making the process complex
and time-intensive.

7 Results

7.1 Square Wave Tracking

Figure 5: Comparison of Position Normalized Errors
for Different Controllers in Square Wave Position Tra-
jectory Tracking. The figure highlights the performance
of the controllers over time, showcasing the ability to
handle sharp transitions and maintain tracking accuracy
over time.

The square wave tracking test evaluates how well
each controller can maintain position accuracy in
a trajectory with sharp transitions – with limited

time for mistakes. From Figure 5, the following
observations can be made:

• PID (Theirs): This controller shows sta-
ble performance with moderate error levels
throughout the trajectory. Their controller
was able to make sharp transitions and avoid
overshooting errors, with acceptable hovering
performance.

• PID (Ours): Our PID implementation ex-
hibits higher errors. Qualitatively, the sharp
left, right, and especially the corner track-
ing showed the x-y controllers could benefit
from tuning. However, given the scope of the
project this controller showed acceptable per-
formance and if given more time to tune could
in theory get as good or better as Crazyflie’s
PID controller.

• LQR (Ours): LQR demonstrates the best
overall performance of the custom controllers
developed with consistently low normalized
errors. LQR was faster to react to position
changes, showing sharp changes in trajectory
– but sometimes overshot. If position error was
minimized, its hover mode was qualitatively
and quantitatively shown to be smooth.

• SMC (Ours): The SMC controller struggles
significantly with position control, leading
to large spikes in error. This suggests that
SMC may require further tuning or a more
robust design to handle high-frequency trajec-
tory changes effectively. Perhaps, if it had
used its own SMC controller for x and y po-
sition control improvements could have been
seen.

9

7.2 Hover With Wind Conditions

Figure 6: Comparison of Normalized Position Errors for
Different Controllers During Hover Test Under Wind
Conditions (1 m/s). The figure highlights how each con-
troller maintains position stability despite disturbances.

Figure 7: Comparison of Normalized Orientation Errors
for Different Controllers During Hover Test Under Wind
Conditions (1 m/s). The figure evaluates how well the
controllers manage angular stability in the presence of
wind disturbances.

The hover test under wind disturbances evaluates
the controllers’ abilities to maintain position and
orientation stability. Key insights from Figures 6
and 7 are as follows:

Position Error Analysis
• PID (Theirs): In takeoff, the PID struggled

at first, but regained its balance – maintaining
a consistently small position error.

• PID (Ours): Our PID controller has worse
performance than the Crazyflie implementa-
tion, but showed effort to control position.

• LQR (Ours): LQR showed stability in roll
and pitch, but came with a constant price in
position. LQR showed effort to maintain posi-
tion, but prioritized orientation stability.

• SMC (Ours): SMC performs better in hover
tests than in the square wave trajectory but
still exhibits higher position errors compared
to LQR and PID, particularly as the test con-
tinued.

Orientation Error Analysis

• PID (Theirs): At liftoff, their PID displays
the largest orientation errors, prioritizing posi-
tion control over potential tipping. However,
it maintained hover and recovered well after
time – outperforming all controllers except
the LQR.

• PID (Ours): Our PID implementation re-
duces orientation errors compared to the base-
line version, providing improved angular sta-
bility.

• LQR (Ours): LQR excelled here, main-
taining the lowest orientation errors – even
smaller than PID. This is a promising result
that shows our controller could be more robust
to wind disturbances than the in-built software
PID.

• SMC (Ours): SMC shows moderate perfor-
mance, with higher variability in orientation
errors compared to other controllers - likely
due to chattering which was evident. With
more time, tuning could have been done to
minimize chattering in wind conditions.

Summary of Square Wave Tracking and Hover
with Wind Conditions

The evaluation of controllers in square wave track-
ing and hover under wind disturbances revealed
key performance differences:

itemize

PID (Theirs): Consistently reliable in both tests,
maintaining moderate errors and robust recovery
during hover.

PID (Ours): Showed acceptable performance with
room for improvement in tuning to match or exceed
the baseline.

LQR (Ours): Demonstrated the best orientation
stability and low tracking errors but occasionally
overshot and traded position accuracy for orienta-
tion stability

SMC (Ours): Struggled in trajectory tracking and
exhibited chattering under wind, requiring signifi-
cant tuning to improve stability.

10

Qualitative Further Observations
Additional testing with increasing wind speeds
in the drone cage provided insights into the con-
trollers’ robustness under extreme disturbances.
The custom PID controller maintained stability
only at low wind speeds, while the SMC handled
low to medium speeds but failed at higher intensi-
ties. The baseline PID resisted high wind speeds
but ultimately lost control.

The LQR controller exhibited the best perfor-
mance, maintaining stability even at the highest
wind setting. However, position drift led the drone
to collide with the wall, underscoring a trade-off
between orientation stability and positional control.
These observations highlight the controllers’ vary-
ing capacities to handle real-world disturbances
and the potential for further refinement.

Overall, the LQR excelled in orientation stabil-
ity, while their PID remained a robust baseline for
position control. Our SMC and PID demonstrated
potential but require further optimization. Given
more time, we believe an implementation of SMC
and LQR would be ideal for improved controllers
in wind conditions. Additionally, LQR could be
further tuned to find a more optimal tradeoff be-
tween orientation control and position control.

8 Reflection and Next Steps

The team encountered several hardware challenges
during implementation on the Crazyflie platform.
Broken propellers, damaged chassis, unresponsive
optical flow decks, and faulty motor interface plugs
frequently interrupted testing. Furthermore, sensor
drift in the optical flow deck and the pitch angle be-
ing defined in a left-handed manner introduced con-
fusion during tuning, resulting in numerous false
logic errors. Tuning controllers on hardware was
particularly time-intensive, as experiments required
reflashing firmware for parameter updates, with test
durations ranging from seconds to over ten minutes.

Despite these challenges, the systematic
simulation-to-hardware pipeline enabled the suc-
cessful deployment of all three controllers. This
pipeline provided insights into the sim-to-real gap,
emphasizing the effects of unmodeled dynamics
and physical discrepancies. Notably, the SMC con-
troller demonstrated high potential for rejecting
disturbances, making it a promising candidate for
further refinement. Future efforts will focus on
fine-tuning SMC to address chattering, improve
positional accuracy, and explore hybrid control

strategies combining the robustness of SMC with
the precision of LQR. Additionally, incorporating
advanced adaptive control methods or enhanced
modeling techniques may better account for real-
world dynamics, streamlining the transition from
simulation to hardware.

9 Conclusion

This study demonstrated the successful implemen-
tation of SMC on a low-weight quadrotor platform
like the Crazyflie, which, to the best of our knowl-
edge, had not been previously achieved. In addition,
three distinct controllers— PID, LQR, and SMC —
were designed, implemented, and evaluated, show-
casing characteristics consistent with theoretical
expectations, such as chattering in SMC and robust
disturbance rejection in LQR. These results vali-
dated the practical application of advanced control
strategies on lightweight drones using only onboard
sensors, such as Crazyflie’s optical flow deck, with-
out relying on external systems like motion capture
rooms or lighthouse tracking.

Beyond the technical contributions, this project
provided a valuable learning experience for us
as master’s students entering the field of control
systems and aerial robotics. By navigating chal-
lenges such as hardware limitations, unmodeled
dynamics, and the sim-to-real gap, we gained criti-
cal insights into the complexities of designing ro-
bust controllers for real-world applications. The
study also emphasized the importance of system-
atic simulation-to-hardware pipelines, which facili-
tated iterative development and reduced the risk of
integration errors.

The ability to develop and test controllers us-
ing localized onboard sensors highlights the poten-
tial for deploying drones in real-world conditions,
where reliance on controlled environments is not
feasible. This work serves as a stepping stone for
expanding autonomous aerial robot applications
into scenarios such as search-and-rescue missions,
industrial inspections, and other tasks requiring
robust and adaptive control in dynamic and unpre-
dictable environments.

Reproducibility: All videos and source code, in-
cluding Crazyflie and simulation scripts, are avail-
able on our Github Repository.

Acknowledgments

We thank Dr. Bedillion, Karthik Karumanchi, and
Arvind Car for guidance and support.

11

https://github.com/willkraus9/GustGurus-Drone-Project

Appendix A: System Variables and Nonlinear to Linearized Dynamics

Symbol Description
x, y, z Position of the drone in 3D space
ϕ, θ, ψ Roll, pitch, and yaw angles
Ix, Iy, Iz Inertia around respective axes

U1, U2, U3, U4 Thrust and torques generated by the propellers
Ax, Ay, Az Drag coefficients for the drone

Nonlinear Dynamics
The nonlinear dynamics of the drone are:

ẍ =
U1

m
(cosϕ sin θ cosψ + sinϕ sinψ)−Axẋ

ÿ =
U1

m
(cosϕ sin θ sinψ − sinϕ cosψ)−Ayẏ

z̈ =
U1

m
cosϕ cos θ − g −Az ż

ϕ̈ = θ̇ψ̇(
Iy − Iz
Ix

)− JR
Ix
θ̇ΩR +

1

Ix
U2

θ̈ = ϕ̇ψ̇(
Iz − Ix
Iy

)− JR
Iy
ϕ̇ΩR +

1

Iy
U3

ψ̈ = ϕ̇θ̇(
Ix − Iy
Iz

) +
1

Iz
U4

Linearized Dynamics
Linearizing the dynamics using small-angle approximations and neglecting higher-order terms:

ẍ ≈ gθ, ÿ ≈ −gϕ, z̈ ≈ ∆U1

m
,

ϕ̈ ≈ 1

Ix
U2, θ̈ ≈ 1

Iy
U3, ψ̈ ≈ 1

Iz
U4.

From these equations, one can find the A and B matrices using their respective Jacobians.

LQR Gain Matrix for Gazebo Simulation
The optimal infinite-horizon LQR gain matrix K for the LQR controller in Gazebo simulation is:

K =

−1.9e − 13 0 12 0 −2.9e − 12 0 −3.6e − 13 0 0.9 0
−2.3e − 12 0

0 −0.00159383354 0 0.0148803678 0 1.36528461 × 10−11 0.00000000 −0.00219927784 0.00000000 0.00514554485

0.00000000 7.18928267 × 10−14

0.00159383355 0.00000000 −2.28114205 × 10−13 0.00000000 0.0148803679 0.00000000 0.00219927786 0.00000000 −8.70169129 × 10−15 0.00000000
0.00514554485 0.00000000

0.00000000 −1.31704745 × 10−12 0.00000000 1.60295462 × 10−11 0.00000000 0.0406755758 0.00000000 −4984516 × 10−12 0.00000000 5.91393329 × 10−14

0.00000000 0.00566081644

12

Appendix B: Sliding Mode Controller derivation

.1 Introduction
SMC is a robust control method designed for nonlinear systems with uncertainties or external disturbances.
It works by driving the system states to a predefined surface in the state space, called the sliding manifold,
and maintaining the states on this manifold. Once the system reaches the sliding manifold, the dynamics
are constrained to follow it, resulting in desired behavior and robustness to system uncertainties.

Key characteristics of SMC:

• Robustness: SMC is highly robust to uncertainties and disturbances, making it suitable for systems
with unmodeled dynamics.

• Sliding Phase: Once on the sliding manifold, the system behaves according to the desired dynamics.

• Finite-Time Convergence: The system states are driven to the manifold in finite time.

Despite these advantages, traditional SMC can lead to high-frequency control signal oscillations, known
as chattering, which must be mitigated for practical implementation.

.2 Sliding manifold
The sliding manifold is a carefully chosen surface in the system’s state space that defines the desired
dynamic behavior. For a single-input, single-output system, the sliding manifold is typically defined as:

s(x) = ẋ+ αx

where:

• x is the system state,

• α > 0 is a design parameter that controls the rate of convergence.

The goal of SMC is to design a control law that ensures:

1. The system state reaches the sliding manifold in finite time (s(x) = 0).

2. The system remains on the manifold for all subsequent times.

This is achieved by designing the control law to satisfy a Lyapunov stability condition.

.3 Lyapunov stability
In control theory, Lyapunov stability is used to verify the stability of a system by defining a scalar
energy-like function V (s), known as a Lyapunov function. The Lyapunov function measures how ”far”
the system is from the desired equilibrium. By ensuring that V (s) decreases over time (V̇ (s) ≤ 0), we
can guarantee that the system will converge to and remain on the sliding manifold.

For SMC, the Lyapunov function is chosen as:

V (s) =
1

2
s2

This function satisfies the following properties:

• Positive Definiteness:
V (s) > 0 for s ̸= 0, V (s) = 0at s = 0

• Radial Unboundedness:
V (s) → ∞ as |s| → ∞

• Negative Semi-Definiteness of the Derivative:

V̇ (s) = sṡ ≤ 0

These properties ensure that the system states are driven toward the sliding manifold and remain there,
guaranteeing global asymptotic stability.

13

.4 General control law derivation

The time derivative of the Lyapunov function is:

V̇ (s) = sṡ

Using the definition of the sliding manifold:

ṡ(x) = ẍ+ αẋ

Substitute the system dynamics:

ẍ = f(x, ẋ) + bu

where f(x, ẋ) represents the nonlinear dynamics and b is the control gain. This gives:

ṡ(x) = f(x, ẋ) + bu+ αẋ

Substitute ṡ into V̇ (s):

V̇ (s) = s (f(x, ẋ) + bu+ αẋ)

To ensure stability (V̇ (s) ≤ 0), the control input u is designed as:

u = udyn + usw

The first control law udyn is responsible for compensating the system dynamics and can be written as:

ueq = −1

b
(f(x, ẋ) + αẋ)

.
It is responsible for compensating the dynamics component, since the dynamics cannot guarantee

negative semi-definiteness. For the second control law we can try following approaches.

1. Switching Control (usw)

usw = −k sign(s)

The combined control law becomes:

u = −1

b
(f(x, ẋ) + αẋ)− k sign(s)

Substitute u into ṡ(x):

ṡ(x) = −kb sign(s)

Substitute into V̇ (s):

V̇ (s) = −kb|s|

Since V̇ (s) < 0 for all s ̸= 0, the system is globally asymptotically stable.
The downside to this approach is that the discontinuity in the sign function and constant gain cause

high frequency stationary chattering. In general, we know that control laws that solely depend on such
switching terms are robust but suffer from severe chattering due to the discontinuous nature of the control
input.

14

2. State-dependent gain-based switching control

usw = −k1ẋ2 sign(s)

The combined control law becomes:

u = −1

b
(f(x, ẋ) + αẋ) + k1ẋ

2 sign(s)

Substitute u into ṡ(x):
ṡ(x) = bk1ẋ

2 sign(s)

Substitute into V̇ (s):
V̇ (s) = bk1ẋ

2s sign(s)

In this case we can see that the state-dependent scaling term reduces the severity of chattering but can
amplify nonlinearities when the system velocity ẋ is high. It also exhibits weaker control at low velocities,
delaying convergence to the sliding manifold. Even though the state dependent gain reduces intensity of
chattering it is still prevalent.

3. Manifold-dependent smooth control Law

usw = −k1s

The combined control law becomes:

u = −1

b
(f(x, ẋ) + αẋ)− k1s

Substitute u into ṡ(x):
ṡ(x) = −k1bs

Substitute into V̇ (s):
V̇ (s) = −k1bs2

Since V̇ (s) < 0 for all s ̸= 0, the system is globally asymptotically stable. This control law eliminates
chattering entirely but converges slower than previous methods, making it less robust as well. The reason
is that this controller only reaches the manifold asymptotically, while switching controllers manage to do
it in finite time.

4. Combined Control Law

usw = −k1s− k2ẋ
2 sign(s)

The combined control law becomes:

u = −1

b
(f(x, ẋ) + αẋ)− k1s− k2ẋ

2 sign(s)

Substitute u into ṡ(x):
ṡ(x) = −k1bs− bk2ẋ

2 sign(s)

Substitute into V̇ (s):
V̇ (s) = −k1bs2 − bk2ẋ

2s sign(s)

Again we can see that V̇ (s) < 0 for all s ̸= 0, which means that the system is globally asymptotically
stable.

The control parameters k1 and k2 play a crucial role in determining the behavior of the system under
the SMC framework The parameter k1, associated with the proportional term, directly affects the rate of
convergence to the sliding manifold. A larger k1 leads to faster convergence and greater damping but can
also result in overshoot or oscillations if it is too high. On the other hand, a smaller k1 results in slower
convergence, which smoothens the system’s response but may reduce its ability to reject disturbances

15

effectively. Similarly, k2, associated with the switching term, governs the robustness of the system to
uncertainties and external disturbances. A larger k2 enhances robustness but increases the likelihood of
chattering, a high-frequency oscillation that can damage actuators or reduce efficiency. A smaller k2,
while reducing chattering and ensuring smoother control, may weaken the system’s disturbance rejection
capabilities.

Appendix C: Simulation Setup and Tools

Gazebo Simulation
The Gazebo environment was configured using the CrazyFlie URDF model and open-source plugins. Wind
disturbances were simulated with the crazyflie world.sdf plugin, allowing dynamic parameter
adjustments.

ROS2 Workflow
The ROS2 framework was used to control and monitor the simulation:

• ros2 node list, ros2 topic list: Debugging tools.

• Custom scripts for motor control and sensor feedback.

Simulation Parameters
Key parameters used in the simulation include:

• Wind speed: 0-3 m/s

16

References

[1] bitcraze. GitHub - bitcraze/crazyflie-simulation. GitHub, 2022. URL: https://github.com/

bitcraze/crazyflie-simulation (visited on 12/14/2024).
[2] Bo Dai et al. “Wind Disturbance Rejection for Unmanned Aerial Vehicle Based on Acceleration

Feedback Method”. In: 2018 IEEE Conference on Decision and Control (CDC). 2018, pp. 4680–
4686. DOI: 10.1109/CDC.2018.8619798.

[3] Zachary T. Dydek, Anuradha M. Annaswamy, and Eugene Lavretsky. “Adaptive Control of Quadrotor
UAVs: A Design Trade Study With Flight Evaluations”. In: IEEE Transactions on Control Systems
Technology 21.4 (2013), pp. 1400–1406. DOI: 10.1109/TCST.2012.2200104.

[4] Arie Levant. “Sliding mode control and observation”. In: Boris J. Lurie Memorial Conference
on Sliding Mode Control. Springer. 2017, pp. 22–35. URL: https://inria.hal.science/hal-
01566857.

[5] Khai Nguyen et al. TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers.
2024. arXiv: 2310.16985 [cs.RO]. URL: https://arxiv.org/abs/2310.16985.

[6] Robert Scholten. Modelling and control of quadcopter. Tech. rep. University of Twente, 2017. URL:
https://d1wqtxts1xzle7.cloudfront.net/53671248/eluu11_public-libre.pdf.

[7] Zaid Tahir, Waleed Tahir, and Saad Ali Liaqat. “State Space System Modeling of a Quad Copter
UAV”. In: CoRR abs/1908.07401 (2019). arXiv: 1908.07401. URL: http://arxiv.org/abs/1908.
07401.

17

https://github.com/bitcraze/crazyflie-simulation
https://github.com/bitcraze/crazyflie-simulation
https://doi.org/10.1109/CDC.2018.8619798
https://doi.org/10.1109/TCST.2012.2200104
https://inria.hal.science/hal-01566857
https://inria.hal.science/hal-01566857
https://arxiv.org/abs/2310.16985
https://arxiv.org/abs/2310.16985
https://d1wqtxts1xzle7.cloudfront.net/53671248/eluu11_public-libre.pdf
https://arxiv.org/abs/1908.07401
http://arxiv.org/abs/1908.07401
http://arxiv.org/abs/1908.07401

