
Model-based Reinforcement Learning and
Transformer Architecture in a Humanoid Robot

Environment

Brandon Woodward1, Kaustabh Paul1, Will Kraus1, and Anton Yanovich1

1Carnegie Mellon University, Pittsburgh, USA

Abstract: In terms of humanoid robot whole-body control, modern approaches
for deployment have leveraged simulated environments to train robust learned
policies. Many training algorithms use several multi-layer perceptrons (MLPs) to
encode learned dynamics. In contrast, much research has been done on transform-
ers that predict tokens in a multitude of contexts using different types of training
data. This paper proposes the use of transformers as a substitution for MLPs in a
reinforcement learning training architecture. The performance of this addition is
tested in a model-based reinforcement learning approach on a whole-body control
policy for a humanoid robot and compared against the performance without the
use of a transformer. We show that a transformer architecture allows a humanoid
robot to reach comparable performance with less training time. In addition, we ex-
periment with transformer pre-training and show that this signicantly enhances
the smootheness of robots joints transitions unrelated to the reward as well as
signicant improvement in training time.

Keywords: Reinforcement Learning, Whole Body Control, Humanoid Robotics

1 Introduction

Prior to the renement of reinforcement learning techniques, whole-body control of humanoid
robots primarily leveraged model predictive control and quadratic program solvers to provide con-
straints for contact dynamics and manipulation tasks. While these methods are stable and sample
efcient, the main drawback of these controllers is their lack of generalizability and adaptability
across domains [1]. Tuning these controllers has been an ongoing effort for effective hardware roll-
outs and has required specialized teams of engineers. However, with reinforcement learning and
other techniques that leverage simulation and neural networks, policies that achieve the same level
of performance can be created and tuned in simulation before deployment. This approach to whole-
body control allows for real-time deployment that is robust enough for useful work applications
while remaining generalizable enough to complete different tasks [2]. One of the strengths of rein-
forcement learning is the reliance on neural networks that capture nonlinearities in certain models,
such as contact dynamics interactions and certain sim-to-real gaps. These neural networks act as
function approximators and show improved capabilities over solely model-based control [3]. In the
last few years, transformer-based neural network models have been used in robotics applications,
such as in high-level planning and decision-making [4]. The idea of a transformer that can intu-
itively process complex relationships between actions and states is particularly interesting, as their
applications may be useful in controlling hard-to-describe control tasks.

The present paper seeks to benchmark the performance of a model-based reinforcement learning
approach with MLPs and with a selection of MLPs replaced with a transformer. The contribution
leverages the generalizability of a transformer architecture, pre-trained across a number of tasks in a
variety of worlds and embodiments, within an already versatile reinforcement learning algorithm. In

Course Project, 16-831 Introduction to Robot Learning, Spring 2024, CMU



the future, this approach to neural network structure interchangeability could enhance the quality of
tasks completed with model-based algorithms and broaden the type of tasks that can be completed.

2 Related Work

2.1 Model-Based Reinforcement Learning

The renement of model-based reinforcement learning methods has been a gradual process stem-
ming from model-based control system architectures. Instead of being assigned a model as a base
for control policies, model-based reinforcement learning attempts to learn a model for a system
and prescribe actions upon the simulated or physical system. In particular, approaches that encode
parts of the world model alongside model-specic information have been successful at generalizing
across a variety of tasks due to the encoding of reward-specic information; this allows for a better
intuitive understanding of the reward and tasks [5]. While this method is robust to changes in tasks
and environments, the focus on unnecessary attributes of the encoded state, such as colors or shading
in the simulated environment, can lead to unnecessary processing and encoding.

2.2 Transformers

Transformers are a multi-headed, encoder-decoder architecture originally used for natural language
processing in large language models (LLMs). While the exact implementation of transformer struc-
tures varies across different papers, the overall goal remains the same: receive a sequence of inputs,
connect inputs across the sequence using an attention structure, and abstract the inputs into the latent
space repeatedly using the encoder. A decoder then predicts the outputs based on these correlated
latent space representations. Transformers are particularly well-suited to robotics applications, since
the combination of action, state, and reward sequences have correlations that can be adapted into po-
sitional encoding for multi-head attention via timesteps [6]. Previous work on implementing LLMs
into robotics applications has focused on long-horizon planning at a high level for complex tasks that
are challenging to program, such as highly structured but logistically complex cooking tasks [7].
However, this structure can be exploited for other tasks as well, as tokens of text can be interchanged
for any sequence of inputs.

3 Method

The transformer architecture in this contribution draws inspiration from the decision transformer
by Chen et al; the inputs to the transformer are previous action, encoded state and task, rewards,
return-to-go sets, timesteps, and attention masks, while the outputs are predicted state, actions,
rewards and Q-values [6]. The reinforcement learning structure to be modied by this transformer,
TD-MPC2, is used for both its generalizability across different embodiments and the availability
of its open-source training dataset [8]. The TD-MPC2 agent plans future actions using the MPPI
algorithm, a sampling based model predictive control framework; the transformer is recongured
to output action mean and log-variance instead in this area of TD-MPC2. Figure 1 shows how the
MPPI algorithm is changed by replacing the MLPs responsible for action mean and log-variance
generation with the modied decision transformer. Some of the previously mentioned inputs and
outputs (e.g. timesteps, attention masks, predicted Q-values) are not expressed to simplify how the
implementation is structured. The transformer is trained to not explicitly require inputs from all
sources and unspecied input values are set to zero. This allows the TD-MPC2 algorithm to provide
the transformer with only currently available information while still being able to function correctly.
Hence, the transformer can successfully predict future action, mean, and log-variance given only
the current state. For initial testing results, the action, mean, and log-variance are used to evaluate
the viability of replacing an MLP with the transformer; the output architecture is kept intact to
potentially replace more MLPs as a potential future work.

Pre-training of the transformer is done using the TD-MPC2 dataset MT30 [8], which has 345 million
transitions across 11 different models performing 30 different tasks. The training uses a combined

2



Figure 1: System architecture of transformer integration.

loss function of MSE for the encoded state and the action, soft cross entropy for the reward and
Q-values, and Q-learning loss using log-likelihood and the maximum Q at a given state for the
action distribution. The Q-value used in the action distribution loss is copied and detached from the
original Q-value tensor to avoid any backpropagation from this portion of the loss. The pre-training
also has a tuneable probability to provide the transformer with solely state state information to avoid
becoming reliant on a small selection inputs like previous actions or rewards.

This hybrid structure is implemented in a whole-body control simulation from the HumanoidBench
implementation, which standardized whole-body control tasks using a Unitree H1 with two Shadow
Dexterous Hands in either xed or actuated congurations [9]. A total of 27 tasks spanning locomo-
tion, static manipulation, and dynamic manipulation tasks were organized in a variety of real-world
scenarios. While there are a wide variety of tasks to decide for an intial implementation, the task
sit simple is used as a challenge in comparison to classical MPC-based policies, since sitting in a
chair typically requires contact forces that are challenging to model.

4 Experimental Results

Initial results using a transformer initialized with random weights reach similar returns to the base
TD-MPC2 algorithm with a 54% reduction in the number of training epochs. Intuitively, these
results make sense because of how updates to the neural networks work. Using a normal MLP,
transitions are passed into the network in batches and loss is calculated for each individual transition.
However, with a transformer, the transition sequences can be linked to each other, and the action
transitions are learned at a faster rate.

During pre-training, the transformer learns smooth motions that are consistent with successful re-
ward function implementations across different embodiments, since a higher reward is consistent
with smooth, uid motions as opposed to erratic behavior. These connections are maintained through
the ne-tuning from TD-MPC2. This is most noticeable in the arms of the robot, which are absent
from the reward function for the sit simple task. A qualitative comparison of the training results
shows that the arms of the robot were relatively restrained to the torso area and had far less er-
ratic behavior, even though there was no positive reward function for doing so. This video result is
available in the Appendix via QR code.

3



Figure 2: Results at roughly 1 million steps in training; videos can be viewed in QR code form in
the appendix.

Figure 3: episode reward across the pre-trained transformer, the standalone TD-MPC2 implemen-
tation, and the combined TD-MPC2 and transformer implementation. Note that the training for the
algorithms was prematurely ended due to the limited computing available for the project.

The rewards reach the same level of return of around 800, but the ”TD-MPC2 + Transformer”
implementation reaches these returns before the pre-trained transformer. With the transformer pre-
trained, the training time is reduced by 27%, while a less smooth implementation without pre-
training showed a 54% reduction in training time.

5 Conclusion

The paper proposes an implementation of whole-body control for a humanoid robot using rein-
forcement learning with both a pre-trained and untrained transformer model. By switching to a
transformer-based approach instead of using MLPs in a custom implementation of TD-MPC2, the
nal results show improvements over a standard reinforcement learning implementation. In total,
the contribution gives credence to a possible solution to issues with reinforcement learning imple-
mentations, as multi-headed attention is suited for a sequential input of various domains for state
and prior action. The transformer showed promising results when used to replace a single MLP in
the TD-MPC2 algorithm, reducing the training time needed for similar results to the base imple-
mentation by a minimum of 27% with pre-training and a maximum of 54% without pre-training.
The pre-trained algorithm shows more robust results at the cost of a longer online training time.
Therefore, both methods shows a reduction in training time over the unmodied TD-MPC2 imple-
mentation. Future areas of study for this topic include the addition of more tasks found within the
HumanoidBench paper, such as dexterous manipulation and robot athleticism. In addition, more
MLPs can be replaced using the decision transformer architecture to produce smooth actions and
reduced training time.

4



References
[1] T. Koolen, S. Bertrand, G. Thomas, T. De Boer, T. Wu, J. Smith, J. Englsberger, and J. Pratt.

Design of a momentum-based control framework and application to the humanoid robot atlas.
13(1):1650007. ISSN 0219-8436, 1793-6942. doi:10.1142/S0219843616500079. URL https:

//www.worldscientific.com/doi/abs/10.1142/S0219843616500079.

[2] X. Cheng, Y. Ji, J. Chen, R. Yang, G. Yang, and X. Wang. Expressive whole-body control for
humanoid robots. URL http://arxiv.org/abs/2402.16796.

[3] Y. Song, A. Romero, M. Mueller, V. Koltun, and D. Scaramuzza. Reaching the limit in au-
tonomous racing: Optimal control versus reinforcement learning. 8(82):eadg1462. ISSN 2470-
9476. doi:10.1126/scirobotics.adg1462. URL http://arxiv.org/abs/2310.10943.

[4] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. URL http://arxiv.org/abs/2201.

07207.

[5] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. URL http://arxiv.org/abs/2301.04104.

[6] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. URL http:

//arxiv.org/abs/2106.01345.

[7] F. Joublin, A. Ceravola, P. Smirnov, F. Ocker, J. Deigmoeller, A. Belardinelli, C. Wang,
S. Hasler, D. Tanneberg, and M. Gienger. CoPAL: Corrective planning of robot actions with
large language models. URL http://arxiv.org/abs/2310.07263.

[8] N. Hansen, H. Su, and X. Wang. TD-MPC2: Scalable, robust world models for continuous
control. URL http://arxiv.org/abs/2310.16828.

[9] C. Sferrazza, D.-M. Huang, X. Lin, Y. Lee, and P. Abbeel. HumanoidBench: Simulated hu-
manoid benchmark for whole-body locomotion and manipulation. URL http://arxiv.org/

abs/2403.10506.

5



A Appendix

A.1 Decision Transformer Hyperparameters

The following are our hyperparameters tuned for the selected task.

Parameter Value
numtasks 31
latent dim 512
action dim 61

use horizon batchsize dimensioning False
only state p 0.5
multitask True

obs state
obs shape {′state′ : [151]}

tasks [0, 1, ..., 29, ’humanoid h1hand-sit simple-v0’]
task dim 64

num enc layers 2
enc dim 2

simnorm dim 8
encoder dim 256

lr 1× 10−4

num epochs 120
batch size 64

clip grad norm 20
rho 0.5

entropy coef 1× 10−4

tau 0.005
horizon 4

consistency coef 20
reward coef 0.1
value coef 0.1
action coef 0.1
log pi coef 0.1
num bins 101
vmin −10
vmax 10
bin size vmax−vmin

num bins−1

6



A.2 TD-MPC2 Hyperparameters

We use the same hyperparameters as the authors of the TD-MPC2 method.

A.3 Reward Implementation

We use the same reward function as the authors of Humanoid Bench.

sittingx = tol(xrobot − xchair, (−0.19, 0.19), 0.2)

sittingy = tol(yrobot − ychair, (0, 0), 0.1)

sittingz = tol(zrobot, (0.68, 0.72), 0.2)
posture = tol(zhead − zIMU, (0.35, 0.45), 0.3)

stillx = tol(vx, (0, 0), 2)
stilly = tol(vy, (0, 0), 2)

R(s, a) =

0.5 · sittingz + 0.5 · sittingx × sittingy


× upright× posture× e×mean(stillx, stilly)

7



A.4 QR Code Video

8


