1 Introduction

For this project, a Linux environment with a GPU is highly recommended for rendering

the simulation environment. To solve this issue, we will be using an Amazon Web Services

(AWS) command line interface (CLI) and then visualizing results using a remote viewer tool.
AWS Installation:

e YouTube Tutorial: https://www.youtube.com/watch?v=CjKhQoYeR4Q
NICE DCYV for Visualizing:

e Guide: https://jeremypedersen.com/posts/2023-03-06-nice-dcv-ubuntu-22/

e Note: Use Ubuntu 20.04 instead of 22.04, as the latter is not compatible with ROS
Noetic.

Installing LocoMan:

e Follow instructions on GitHub: https://github.com/linchangyil/locoman

e Common issue with new installations of Linux (sudo access not present): https:
//www.baeldung.com/linux/username-not-in-sudoers-file

In the field of robotics, legged robots offer distinct advantages over wheeled locomotion
strategies: the ability to traverse sloped environments, robustness to vertically large or
entangling obstacles that impede or obscure robots, and navigation between constrained
spaces. However, dexterous manipulation presents a challenge to legged robots, including
quadrupeds. One possible solution to this has been displayed in the paper “LocoMan:
Advancing Versatile Quadrupedal Dexterity with Lightweight Loco-Manipulators”, in which
3-DOF manipulators are attached to the robot’s front legs to enhance manipulation tasks.
Thus, the robot can both navigate complex terrain and, upon reaching a goal location, grasp
objects by switching to a manipulation-specific operation mode using a Finite State Machine
(FSM).

Robot Commander (=400 Hz)

N Mode
Yes Switchers
m_- P
Ko

Commanders

¥ -
(e
(.4}
User Commander (<400 Hz) t \“L:

o — (LT
MU Reoding

Unified Whole-Body Controller

LacoMan

Joint-Level PD
Control (2000 Hi)

Whole-Body
Impulse Control
(400 Hiz)

(5.9

Figure 1: Block Diagram for LocoMan. A state machine (left, green) dictates the torso, end
effector (eef) and foot desired positions and a whole body controller (right, red) computes
torques for the simulated or hardware version of the robot. A state estimator feeds sensor
readings back into the whole body controller for feedback control.

https://www.youtube.com/watch?v=CjKhQoYeR4Q
https://jeremypedersen.com/posts/2023-03-06-nice-dcv-ubuntu-22/
https://github.com/linchangyi1/locoman
https://www.baeldung.com/linux/username-not-in-sudoers-file
https://www.baeldung.com/linux/username-not-in-sudoers-file

Arguably one of the most complicated part of quadruped robots is the control strategy
behind legged motion. One assumption used in many control strategies is that of massless
legs, which simplify the problem of control dramatically to focus on body orientation and
point feet simplifications rather than controlling lightweight legs that can be moved quickly
anyways. Using this simplification, torques are then computed that dictate the trajectory of
the feet, stabilize the center of mass of the robot, and complete other tasks.

2 Model

For the purpose of this assignment, the state estimation process and finite state machine
will not be altered; development will focus on designing the whole body controller and
implementing the design to meet objectives.

For each operation mode M, LocoMan has several sub-objectives to complete tasks ef-
fectively. Each operation mode uses a null-space projection, as seen later in the assignment,
and includes the following desired states:

(z,7) torso desired state (1)
(z,%) end effector desired state (2)
(z,2,¢) foot desired state (3)

Table 1: Hierarchical Tracking Objectives in Whole-Body Control (WBC).

Operation Mode Objective 1 Objective 2 Objective 3 Objective 4 State Estimator
Single Foot Manipulation Torso Position Torso Orientation Foot,, Position - Kinematics-Based
Single Gripper Manipulation | Torso Position Torso Orientation Gripper,, Position | Gripper,, Orientation | Kinematics-Based
Bimanual Manipulation Gripper), Positions | Gripper), Orientations | - - Kinematics-Based
Locomotion Torso Velocity Torso Orientation Footg Positions - Kalman Filter-Based
Loco-Manipulation Torso Velocity Torso Orientation Foots Positions Gripper), Orientations | Kalman Filter-Based

Deriving the whole body controller with the hierarchical objective structure has multiple
parts, which are outlined as:

1. Compute Jacobians and their pseudoinverses for solving inverse kinematics problems
for joint angles of the robot

2. Project non-primary objectives into the null space of the problem to be solved simul-
taneously as the control problem

3. Formulate a Quadratic Programming (QP) optimization problem to solve for the op-
timal ground forces.

4. Compute the optimal torques while damping the response with a low-level feedforward
PD controller.

2.1 Jacobian Calculation

Since the objective hierarchy for LocoMan changes depending on the control mode, the
structure of the dynamics and control problem must be properly accounted for.

Using Table 1, one may note there are n tracking items, each of which are at at ordinal
position ¢ . For each tracking item, the desired position, velocity, and acceleration for the
body and joints of the robot are computed using

q; =q;—1 + Jzﬁpre(fz‘ — ;= Ji(Qi-1 — 9)) (4)
@- = E + J;ﬁpre(fi - Jiqz;l) (5)
Gi = Jff};’ff(féfmd — Jig — Jidi;_y), (6)

where the acceleration command ™9, is given as

imd =7+ K (% — a;) + K§°(2 —), (7)
where K and Kj* are position and velocity feedback gains.

Two pseudo-inverse Jacobian matrices are used for these calculations: JT, which is based
on a singular value decomposition calculation, and J*, which is a dynamically-consistent
pseudo-inverse. The Jacobian for this problem has to have a pseudo-inverse to compute the
desired position and velocity from the tracking objective. Having a dynamically-consistent
pseudo-inverse is essential for tracking the acceleration constraints. Both of these pseudo-
inverses are calculated as follows:

J=UxvT, Jt=vxiuT (8)
JH= AT (AT ! (9)

2.2 Null Space Projection

Table 1 displays different control objectives for Locoman, but how should all these control
objectives be met simultaneously”? One strategy is to use the null space projection, which
projects non-primary control objectives into the null space of the controller. Recall the null
space can be constructed as:

Jj=0

with the Jacobian matrix J representing the original Jacobian matrix. To project a control

action into the null space, a dynamically consistent pseudoinverse is needed to ensure the

control actions for the non-primary and primary control actions are dynamically feasible.
For LocoMan, the null space projection is calculated via the following equations:

Ni1=NoNio--Ni_1ji2
Ji|pre = Ji-1Ni

T = Ji (1= J174)

_ T
Ni|’i*1 =1- Ji|i,1‘]’i|ifl
dyn dyn prdyn ardyn
Ni—l - NO Nl\O Ni—1|i—2
dyn __ 7 ardyn
Ji|pre - JlNi—l

Ty =i (1= T i)

ili—1

Nt =1 — g

ili—1 i)i—14]i—1

where
Ni 1, Ji|i71, CmdNiuA
are from the null space projection for the last tasks and the Jacobian matrix
Ji

is the projection from the previous task.

2.3 Quadratic Programming

Quadratic programming (QP) solves an optimization by structuring the problem in quadratic
form. In this assignment, a QP structure is designed to compute the optimal ground forces
using desired acceleration values. Normally, QP problems can be arranged and computed
using one of several solvers to handle different structures of problems, most of which are
outside of the scope of this assignment. Each QP problem minimizes a cost function subject
to different constraints that are critical to the problem. One example commonly used in
control theory is torque or velocity limits for motors; any optimal solutions must consider
the hardware limitations of the system to ensure that any trajectories can be followed. The
QP problem setup for LocoMan is as follows:

min fQ1 f, + 6Qs0
Si(Agmd + b+ g) = S;JTf, (floating torso dyn.)
G =4+ {gt] (floating torso acceleration)
J

W f, >0 (contact force constraints)

where S is the selection matrix for the dynamics of the torso, A is the mass matrix of the
system, b is the Coriolis force in the quadruped, g is the gravitational force in the bodies
and W is the constraint force matrix for foot contact. For this assignment, the quadprog
Python library will be used.

2.4 Torque Control Calculation

A PD controller is added to the problem formulation to accommodate faster actions than
the whole body controller and to demonstrate robustness to foot placements outside of the
expected final time. The calculations for defining the torques are as follows:

{Tt} =A¢™ +b+g—J'f, (Feedforward PD Torque Control)

7j

The final joint torque under PD control is as follows:

7 =1 + K" — q;) + K345 — d5)

where 7; = joint torques

3 Problems

Exercise 1. To complete these exercises, a few key functions need to be implemented in
whole_body_controller.py:

e _hierarchical_tracking
e gp_optimization
e compute_dynamically_consistent_pseudo_inverse

For the hierarchical tracking function:

1. Create the PD controller for Objectives 1-3

2. Compute the null space projection based on the formulas outlined in this assignment.

For the QP solving function:

1. Define the system matrices (A, b, g, W, etc.) to calculate the QP

2. Formulate the equality constraint CE and the inequality constraint CI
For the pseudo-inverse:

1. Compute the pseudo-inverse for the dynamically-consistent Jacobian J*

Exercise 2. With this implementation of LocoMan working, the robot should be able to
change operating mode. Investigate both joystick.py and keyboard.py to determine
how to change the operating modes in simulation. For Exercises 2 and 3, you are welcome to
use the keyboard controller directly, write a bash script to automate the keyboard commands,
or devise a script to use the commands automatically.

1. Test that the functions are correctly implemented by starting the robot in the Single
Gripper Manipulation mode. Move one of the front quadruped legs from the initial
configuration to any configuration. This will simulate ”grabbing” an object because
grasping an object in a dependable fashion can be challenging to say the least.

Note: if you are encountering an issue related to the parsing of the URDF file for the
simulation, ensure that the commands are being run in the LocoMan directory.

Exercise 3. Now that LocoMan can ”grab” objects, the demonstration of the robot under
the crib at https://linchangyil.github.io/LocoMan/ can be recreated in Isaac Gym.

Switch from the Single Gripper Manipulation mode, reach out to ”grab” an object, change
to Locomotion mode, then back to Single Gripper Manipulation mode, and drop the object.
This exercise fully encapsulates some of the core functionality of LocoMan.

https://linchangyi1.github.io/LocoMan/

4 Reference

1. Lin, C., Liu, X., Yang, Y., Niu, Y., Yu, W., Zhang, T., Tan, J., Boots, B., & Zhao,
D. (2024). LocoMan: Advancing Versatile Quadrupedal Dexterity with Lightweight
Loco-Manipulators. arXiv preprint arXiv:2403.18197.

	Introduction
	Model
	Jacobian Calculation
	Null Space Projection
	Quadratic Programming
	Torque Control Calculation

	Problems
	Reference

